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Abstract. We extend the series expansion of Fisch and Harris for the resistive susceptibility 
,yR( p )  by a further six terms on the square lattice. This leads to a more precise estimate 
of the corresponding exponent y R  = 3.65 * 0.02. We also obtain the exact relation , y R ( p )  = 
2 % f ~ l F ) ,  where T is the sum of the relaxation times for charge diffusion on the cluster 
containing the origin and the expectation value is subject to the condition that the latter 
is finite. A known scaling relation for the fracton dimension, D,, in terms of yR and the 
static exponents is derived without the usual reference to the infinite cluster. Using our 
estimate of y R  we find D, = 1.334* 0.007, which is consistent with the AO conjecture D, = $. 
We also note that yR is the same for directed and undirected percolation to within the 
accuracy of our calculations. 

1. Introduction 

The purpose of this paper is to investigate the conductivity of random-resistor networks 
in the vicinity of the percolation threshold pc. Fisch and Harris (1978, referred to as 
FH below) approached this problem by obtaining low density series expansions for 
the resistive susceptibility defined by 

where R ( r ,  p )  is the mean resistance between the lattice site at an arbitrary chosen 
origin 0 and the site with vector r, given that both sites are in the same finite cluster. 
They also defined a resistive length LR( p )  = ,yR( p ) / S (  p ) ,  where the normalising factor 
S ( p ' )  = 8 ( s l F ) .  Here s is the size of the cluster containing 0 and the expectation 8 is 
subject to the condition, F, that this cluster is finite (see (20)). The exponents describing 
the divergence at p c  of xR, S and LR are respectively yR, y and lR (=  yR - y ) .  

In scaling theory for percolation (Dunn et a1 1975) the central quantities are the 
scaling parameters t( p ) ,  the connectedness length, and Y( p ) ,  a measure of the number 
of sites in a cluster of linear dimension I( p ) ,  which diverge at pc  with critical exponents 
v and A respectively. Y ( p )  may be defined more precisely by s ( s 2 / F ) / 8 ( s l F ) .  In 
two dimensions there is good evidence (den Nijs 1979, Nienhuis et a1 1980) that these 
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exponents have the exact values v = $ and A = 2 +% which we shall use in this work. 
The percolation probability P (  p )  is approached from above p c  with exponent given, 
using hyperscaling, by p = du - A, where d is the space dimension; also y = A - p. 

According to Skal and  Shklovskii (1975) and d e  Gennes (1976) the dynamic 
exponent t which describes the vanishing of the conductivity E( p )  of the infinite cluster 
as p + p c  from above is given by 

f = ( d  -2)U + 5 ~ .  ( 2 )  

This relation enabled FH to obtain the first estimate of t by series expansion methods. 
Gefen et a1 (1983) defined a further dynamic exponent 6 for charge diffusion on 
percolation clusters such that the time scale Y( p )  for diffusion over a distance of order 
[( p )  is given by 

Y(P) - t ( p ) 2 + o .  (3) 

Fick’s law for non-random media corresponds to 8 = 0. Using the Einstein relation 
between diffusion and conduction on the infinite cluster they obtained the scaling 
relation 

e = ( t - p j /  v. (4) 

Alexander and Orbach (1982, referred to as AO below) introduced the fracton 
dimension Df (we use the notation of Alexander 1983) which in the present context 
may be defined by 

3( p )  - Y (  p)2’D‘.  (5) 
The definition may be motivated by the fact that a cluster of uniform density would 
have linear dimension - Y’”* and ( 5 )  with Df= d would then be Fick’s law. Comparison 
with (3) gives 

D,=2D/(2+ e )  (6) 

D f = 2 ( d ~ - j 3 ) / (  t - p  + 2 ~ ) .  (7)  

Df= 2 / (1  + l R / A ) .  (8) 

where D is the fractal dimension A / v ,  and combining this with (4) AO found 

Using (2) and the hyperscaling relation for j3 we find 

In § 3 we give an  independent argument for this relation which refers only to finite 
clusters and is therefore valid below as well as above pc .  The argument will also avoid 
the use of hyperscaling and the Einstein relation. 

The advantage of using Df rather than e as the critical exponent for charge diffusion 
lies in the conjecture of AO that Df (and  hence the relation between Y and 9) is 
independent of d and equal to its value : on the Bethe lattice. This is reasonable on 
the basis that .Y, but not 6, incorporates the variation of fractal dimension with d. The 
value Of=$ was consistent with the numerical data at the time; however the AO 

conjecture inspired a number of recent more accurate Monte Carlo calculations (see 
table 1) the results of which suggest that, for d = 2 ,  : is wrong (however it lies within 
1 %  of the observed values). Also current E expansion results about d = 6 (Harris er 
a1 1984) are inconsistent with the AO conjecture. 

We have extended the 10th-order expansion of FH for xR(p) on the square lattice 
by a further six terms (table 2 ) .  Analysis of this series leads to a n  estimate of yR and  
hence lR (table 1) of accuracy comparable to that obtained by the above Monte Carlo 
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Table 1. Summary of estimates of JR and D, the square lattice bond problem. 

~~~ 

Reference 

Alexander and Orbach (1982) 1.263 88 41 3 
1.334 i 0.007 Our calculation 

Hong et al (1984) 1.293 *0.012 1.323 * 0.004 
Zabolitzky (1984) (Monte Carlo method) 1.322 i 0.003 

1.320*0.005 Herrmann et nl (19841 (transfer matrix method) 
Lobb and Frank (1984) 1.297'::;: 1.322:: :;: 

1.26 * 0.02 

1.297 * 0.007 
1.303i0.014 

Table 2. zR( p ) = 4 p + 2 4 p ' + 1 0 8 p ' + 3 6 2 p 4 + 1 2 2 0 p S + 3 3 9 8 p 6 + 2 Z ~ = ,  a,p".  

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

77 896 
190 748 
43 12 604 
67 668 856 
6071 648971 
4828591206345 
1510174078768384784429 
482303050428087010967529511 
444197575004259426 I77746638313824078 
268782 103489806974480277855715 
656058101816325067 199210653 

15 
15 
115 
805 
24 955 
9442 972 
1023 115770360684 
168262715788986334230 
50 695 608 356 180 386 483 307 488 065 
18509481186104307221 989677 
003086133373297404240300 

work. The value Df = 1.334 * 0.007 calculated from cR using (8) appears to reopen the 
question of the validity of the AO conjecture. Also the recent conjecture of Sahimi 
(1984) t = 1 + 2p  = 1.277 . . . falls just within our estimated range. On the other hand 
the conjecture of Aharony and Stauffer (1984), lR= v = 1.333..  . , for d = 2 ,  seems 
unlikely to be true. It has been noted by one of us (FMB) and independently by Adler 
(private communication) that our result yR = 3.65 * 0.02 for undirected percolation and 
the value (Bhatti and Essam 1984) yR = 3.654*0.017 for directed percolation clusters 
are the same to the accuracy of the calculations. If this were an exact result then it 
would provide a second estimate of Df= 1.333 iO.007. The yR's in three dimensions 
(Adler 1985, Bhatti 1984) are less well determined due to the large uncertainty in the 
estimates of p c ;  however the values for directed and undirected clusters are quite close. 
I n  the remainder of the paper we give details of the series derivation and analysis and 
also present a derivation of (8). 

2. Series derivation and analysis 

2.1. Derivation of low density series for x R (  p )  

It is possible to reformulate the 'cumulant' expansion method used by FH in the form 

(9) x R( P 1 = C R ( g m  1 N m  ( P ) p  
m 
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where e ,  is the number of edges in the graph g,. N , ( p )  is an infinite power series 
with integer coefficients and R ( g , )  is the sum of R,, the resistance between vertices i 
and j of g,, over all vertex pairs. Only graphs in the form of generalised chains need 
be included in the list; up to order 16 there are 9725 of these. For each graph, R was 
computed by two separate programs, one of which solved Kirchoff’s equations by a 
graphical technique which gave the exact rational values and the other calculated the 
eigenvalues of the dynamical matrix of the graph (see below) using a standard package. 
The N,( p )  depend on the lattice and a good check on the calculation of these for the 
square lattice was available since keeping the same N,  and replacing R ( g , )  by other 
functions gave the known mean number and mean size expansions (Sykes et a1 1981) 
(the latter was known only to order 15). 

2.2 Estimation of yR 

We have used two methods to analyse the x R ( p )  series, both of which allow for 
corrections to scaling. In the Baker-Hunter method (1973) the series is transformed 
according to p = p J l  -e-x), where pc  =$, and denoting by bk the coefficient of x k  in 
the resulting expansion, Pad6 approximants are calculated for the series f (x )  having 
general term k !  hk. Now if xR( p )  was of the form 

then the parameters l / y ,  and A, would be given exactly by the poles and residues of 
the [ m - l / m ]  sequence of approximants to f ( x ) .  The extent to which the method 
works in practice will depend on the position and relative strength of the non-physical 
singularities which are also present in ,yR(p). Table 3 gives the estimates of y R =  y,. 
We notice that the values of yR obtained from the last four terms of the series are well 
converged and that there is a general downward trend as the number of terms is 
increased. These data suggest yR=3.65*0.02 and that any change due to further 
extension of the series is unlikely to be in the upward direction. We also estimate the 
first correction-to-scaling exponent y1 - yz = A I  = 1.24i 0.06, in good agreement with 
the value obtained from other d = 2 percolation series (Adler et aI 1982). 

In  the method of Adler et a1 (1982, 1983) Pad6 approximants are formed to z (  1 - x) 
times the Dlog of the series obtained by the transformation p = pc[ 1 - ( 1  - x ) ~ ” ]  where 
z is a parameter. The resulting approximants, for given z, evaluated at x = 1 give 

Table 3. Estimates of yR using the Baker-Hunter method. 

Term [ N / N + 2 ]  [ N / N + l ]  [N,”] [ N + I / N ]  [ N + 2 / N ]  
~~ 

10 3.68 * 
11 3.67 3.67 * 
12 3.68 * 
13 3.64 3.64 * 
14 3.64 3.64 
15 3.64 3.64 * 
16 3.65 3.66 

* Only one pole on the positive real axis. 
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estimates of yR. In an ideal situation with only one confluent singularity afld no 
non-physical singularities all approximants would give yR exactly whenever z = A,/  k, 
k = 1,2, . . . . In practice the harmonics k 2 2 are rarely observed and even analytic 
confluent terms can influence the convergence; values of z are sought which optimise 
the apparent convergence. The value z = 1 corresponds to the standard biased Dlog 
method. Adler et a1 (1982) analysed the three: mean size expansions for bond percola- 
tion on the square lattice and found y = 2.375 * 0.015, A, = 1.25 i 0.15, in good agree- 
ment with y = 2 + &  = 2.3888 . . . (see above). Standard Pad6 analysis of these same 
series had given values which were mutually inconsistent and as high as 2.42. The fact 
that the technique of Adler et a1 removes this inconsistency is a strong point in its 
favour. Recently Adler (1985) has analysed the ten-term expansion of FH for x R ( p ) .  
She argues that the same value of A ,  should be used as for the mean size series and 
finds, using the above range of A , ,  yR = 3.70 * 0.20. Our sixteen-term series gives much 
better convergence (see table 4) and we find that as z varies from 1.1 to 1.4, yR decreases 
from 3.67 to 3.63. This is the same range as we found using the Baker-Hunter method. 
Various sets of approximants were tried and RMS deviation 6 quoted in the table is 
based on the [5/7], [7/5], [5/8], [6/7], [7/6], [5/9], [7/7] and [8/6] approximants. 
These were chosen on the basis of having no defects in the range of z considered. The 
variation of the estimated yK with z is an order of magnitude greater than 6. Again 
we note the downward trend with increasing length of series. 

Table 4. Estimates of yR using the Adler er nl (1983) method. 

Z YR 6 YR 6 

1 .oo 3.679 0.0027 1.25 3.650 0.0037 
1.05 3.673 0.0023 1.30 3.644 0.0044 
1.10 3.667 0.0022 1.35 3.639 0.0052 
1.15 3.661 0.0025 1.40 3.633 0.0061 
1.20 3.657 0.0030 

2.3. The conductive susceptibility 

We have also extended the FH series for the conductive susceptibility, x c ( p ) ,  on the 
square lattice to sixteen terms (table 5) and corrected a significant error in the eighth 
term. The only change required in the computer program was to replace R,] (§  2.10) 
by the conductance, C, = 1/ R,], between sites i and j of the cluster. The recent analysis 
of Adler (1985) gave the exponent yc=0.98*0.04. The results obtained using the 
method of Adler et a1 on the extended series are still not well converged and we show 
in table 6 the values for a set of non-defective approximants with z = 1.25 which use 
between 11 and 16 terms of the series. We estimate yc = 1.1 kO.1 which takes account 
of the variation of z between 1.1 and 1.4 and the upward trend with increasing length 
of series. The value obtained from yR using the scaling relation y c = 2 y - y R  is 
1.13 kO.02 which is consistent with the less accurate direct estimate. The Baker-Hunter 
method applied to this series is less successful and fails to give A ,  consistently. The 
value of yc is higher than that of Adler but still falls below the range obtained from yR. 
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Table 5. , y c ( p ) = 4 p + 6 p 2 + 1 2 p 3 + 2 5 p 4 + 2 ~ ~ = c = ,  c , p n  

n cn 

5 0.242 095 238 095 238 095 238 095 24D + 02 
6 0.488 060 606 060 606 060 606 060 60D + 02 
7 0.964 138 528 138 528 138 528 138 52D+02 
8 0.19367399054274788234433798D+03 
9 0.38597926024008286442445715D+03 

10 0.772 277 170 106625 935 335 221 58D+03 
11 0.15470779759663033946214581D+04 
12 0.309257794363 586442 13886559D+04 
13 0.623711963 83319127751021967D+04 
14 O.l2231593600754558643576330D+05 
15 0.257672913297331 77863700946D+05 
16 0.469291090501 607828 81424694D+05 

Table 6. Estimates of yc using the method of Adler ef a/ (1983) with pc  = 0.5 and z = 1.25. 

Pade 514 415 614 416 516 417 517 716 419 915 816 519 
Y c  0.97 1.02 1.09 0.98 0.99 0.99 0.98 0.99 1.09 1.34 1.12 1.11 

3. Scaling theory for diffusion OD percolation clusters 

We conclude by deriving equation (8). It is sufficient to show that 

Y(P) - J L ( P ) % P )  (11) 

since (8) follows by combining (11) with the definition ( 5 )  and comparing exponents. 
Relation (11) was postulated by one of us (Essam 1980) on the basis that Y ( p )  is a 
measure of the electrical capacity of a cluster with linear dimension of order ( ( p ) .  
However we shall obtain below the exact equation 

X d P )  ==(m (12) 

where T is the sum of relaxation times for charge diffusion on the cluster co containing 
0 and the expectation 8 is calculated subject to the condition F that co is finite. 
Following Dunn et a1 (1975) we show that this equation leads to (11). 

Consider a cluster with s sites, bond resistance r and s x s  adjacency matrix A. 
The dynamical matrix is B = D - A where D is a diagonal matrix with D k k  = dk, the 
valence of site k in the cluster. Solving Kirchoff’s equations, the resistance R,  between 
sites i and j is given by 

(13) R, = r det[ B( i, j)]/det[ B ( j ) ]  

where B ( j )  is the matrix B with the j th row and column deleted and B( i ,  j) has the 
ith and j th  rows and columns deleted. Since det( E )  = 0 we have 

det(B - A I )  = - A ( A I  - A ) ( A ,  - A )  . . . ( A s - l  - A )  

=-b ,A+b2A2.  . . + b s - l ( - A ) s - l + ( - A ) s .  (14) 
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where h k  is the kth non-zero eigenvalue of B and bi is the sum of the determinants 
of all principal submatrices of B having s - i rows and columns, thus 

b, = 2 det[B(j)l  b, = det[B( i, j ) ]  
j = 1  [ i , J l  

where the second sum is over all subsets of two sites of c. Hence 

where we have used the fact that det B ( j )  is independent of j and found b2/bl by 
equating coefficients of A and A *  in (14). Now attach capacity C to each site of the 
lattice and place charge Q on the above cluster. By charge conservation at site i we have 

and ignoring possible degeneracy problems 

where the aik depend on the initial charge distribution and rk = r C / h k ,  the relaxation 
time of the kth normal mode. Therefore if C = 1 

It was shown by Dunn et al (1975) that if X c ( i )  is a property of the cluster c, 
relative to some site i E c, which is independent of the position of c relative to the 
lattice then 

where on the LHS X = X c ( 0 ) ,  the average on the R H S  is over all configurations w of 
the infinite lattice and %,(U)  is the set of all clusters enclosed by a cube of side L 
centred on 0 and containing NL sites. pF is the probability that co is finite. If Xc(  i) = s, 
the number of sites in c, independently of i, then we obtain 

but if X,(i) = X l C c  R,, then 

where we have used (19) applied to c. Using (20) again with Xc = r, gives (12). 
Equations (21) and (22) suggest the scaling relations 

which combine to give ( 1  1). Here N (  p )  is the number of clusters per site having of 
order Y ( p )  sites. 
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